
The generalization probability of a perceptron using the Delta -rule

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L505

(http://iopscience.iop.org/0305-4470/25/8/021)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A Math. Gen. 25 (1992) LSOS-LSLO. Printed in the UK

LElTER TO THE EDlTOR

The generalization probability of a perceptron using the A-rule

Stephan Seewert and Pi1 RujBnS
t Institute of Theoretical Physics, Univenity of Lausanne, CH-1015 Lauranne, Switzerland
$ Universilat Oldenburg, Postfach 2503, D-2900 Oldenburg, Federal Republic of Germany

Received 28 August 1991, in final form 5 January 1992

Abstrsct. We compare the generalization probability of a perceptron using the A-rule with

are superior to Hebb's rule, and comparable with the maximal stability perceptron rule
(minover), both for randomly generated linear separable example sets and for optimal
queries.

nthrr !e"ng z!geri:thmr. O K EfiELCricz! rcm!tc indicate tk! !k h-P>!C g k s rs.l!ts %hi&

The large majority of the artificial neural networks developed recently use the back-
propagation algorithm [13 or some of its variants. This class of learning algorithms is
based on gradient descent search. As a result, many neural network researchers strongly
argue for 'analogue' computing, meaning roughly working with continuous variables
and differential equations.

Learning a linearly separable function with continuous input variables is a convex
programming problem. When the input variables are discrete, the solution is no longer
unique and different learning procedures may lead typically to different solutions. This
situation presents thus a simple testing ground for 'analogue' versus 'digital' computing,
albeit one where the gradient method is an advantage. While for multilayer networks
it seems difficult to assess the extent to which the choice of a particular learning
algorithm contributes to the performance of the network, model calculations can be
done in a single layer perceptron [2]. In this letter, we present a numerical evaluation
of the generalization probability of the &-rule on the class of linear separable functions,
and compare it with other methods. Our results indicate that the A-rule can be tuned
to close-to-optimal performance in both learning from examples and learning from
queries situations, shadowed somewhat by the long convergence time.

First, let us consider the supervised learning scheme (leaming from examples). We
require a neural network to learn a Boolean functionfc 9, defined on N binary inputs
f (s l , . . . , sN) = *1 where sj = *l, and 9 denotes the set of linearly separable functions

hypercube with coordinates (s, , . . . , sN). Only some of the corners are used as examples
during the learning phase. For a given functionf these are coloured black if the output
is +1 and white if it is -1. We say that a function is linearly separable if it is possible
to separate white and black corners with a hyperplane. A linearly separable function
can be written in the form

1 C I%- ;nn..+ r n ~ l r m mnfim.rsltinn i e A n f i n d nr ths m m m r a nf =n W A i m m n r i n n ~ l - -.,. I..1 .L'y..L 'y..v" &" -" ...* --...... " 1. - *.. ".-.....

fw(s) = f ((w , S})(s) = sign[w.s- SI
where s is the input vector, w is the weight vector, and S is the threshold. The equation
of the hyperplane is given by w . s - S = O where w is a vector perpendicular to the
hyperplane.

0305-4470/92/080505+06$04.50 0 1992 IOP Publishing Ltd E 0 5

L506 Letter to the Editor

The calculation of the generalization probability has been formalized [3] as follows.
We choose an arbitrary function fr(s) = f ({ T , O}(S)E LS called the target or teacher
function. From some fixed distribution P(s), we generate a set of M examples 6‘”
(v = 1 ,2 . . . , M), whose desired output corresponds to the target function output
U‘”) =fr(s‘“’). During the learning phase, the algorithm determines a hyperplane with
equation J.s-A = 0 and thus an approximation for the target function f J (s) =
f ({ J , A})(s) (studentfunction). After M examples have been learnt, we wish to know
LUC yiuuavriiry UL LULLIISL caairryr=:o gcuccmw iiviii r (3, vcirig wrrc-crry ~iassiiicu. I nis
is the generalization probability, and is defined in the limit N + a? as
.L^ --AL..Lx: ...- cr._-rI. ̂_^.. ------‘-A*--- ” l -) &-I-- I . . .1...111.> -:-

M
a =-_

N G (a) = l -P , (a) % (a) = X P (s)
(~:JJ(s)+/r(x)l

To simplify, we assume that the thresholds O and A are zero and that P i s a uniform
distribution. The generalization ability now depends only on the angle p between the
‘teacher’ T, and the actual ‘student’ approximation J [4]:

where
N

IT(’= T i .
I = I

In the usual setup for the A-rule, we shall allow the output from neuron 0 to be
a continuous variable BE (-1,l) and use for updating the sigmoid function

O”=tanh[mw.s”]. (1)
0’ can be given a probabilistic interpretation [SI for real neurons. The A learning rule
now consists of minimizing the energy function [I]

M

E = 1 (p - B (”)) * . (2)
U = ,

provided w . w = constant, and m is fixed real parameter.
Consider the very simple situation illustrated in figure 1. Here, we have a linear

separable problem whose solution is a hyperplane. Of the two solutions A and B,

Figure 1. Comparison of different solutions for a linearly separable function.

Letter to the Editor L507

solution B is better because it is more robust under rotation and translation of the
separating plane, or conversely, in the face of uncertainty in the location of the example
points [6] . One can tune m so that if m is small, B is the better solution, since the
energy is smaller; on the other hand, if m is large, then the two solutions are equally
valid because the energy is practically the same for both.

We seek thus to vary m in order to improve the ‘quality’ of the solution. In other
words, if m is small, we hope that the student function will resemble the teacher
function as closely as possible.

To ensure that the norm of w is constant, we use polar coordinates, Bo, . . . , B N - I
for w, and minimize with respect to these variables using the ‘conjugate gradient’
method [7] . This reduces convergence time by a factor of about 6 compared with the
‘gradient descent’ method, and of about 3 compared with the gradient descent with
momentum term method [I] . For the initial condition, we choose random values of
B o , . , ., BN- , within the interval [0, n].

The simulations we made were of two kinds: in one case, the examples were chosen
at random (learning by examples); in the second, we allowed the network itself to
select the training examples (learning by queries): it chose those nearest to the
hyperplane [4]. For convenience, we took IwI = 5 , and 50 neurons throughout. The
results for the two cases were compared with the ‘minover’ algorithm of Krauth and
Mkzard [8] and with the Hebbian rule

Here 6; is the ith component of the example (or query) &” and U” the teacher’s anser
to the input 5”.

In the case of learning by example, the differences in generalization probability
were observed to depend to some extent inversely on m (see figure 2). In the solutions
for m = 0.5, 1 and 1.5 we see that the smaller the value of m, the better the generalization
probability, regardless of the value of a. However, when m = 0.2, this is only true when

L e a r n i n g from examples

Flgore 2. Comparison between generalization probabilities G (a) lor the A-rule from a set
of Randomly generared exnmples with m =0.2, 0.5, I , 1 .5 . The points indicate simulation
results obtained after averaging over I S networks with N = 50.

L508 Letter to the Editor

LI < 2. An explanation of this may be that when the slope is small, any local minimum
or minimum plateau in the energy function would prevent the gradient descent
algorithm from finding the true minimum. Thus, when m was in the approximate
interval 0.5 to 1.5, the neuron network failed to learn 0.01% of the examples presented.
For smaller m, the percentage of failure increased: for m = 0.2 there was 2.2% failure.
As m increased beyond 1.5, the energy function became more and more step-like and
convergence was not achieved.

When we compare the A-rule to the Hebbian rule and the minover algorithm, we
find that the delta-rule is better than the Hebbian rule and comparable with the minover
algorithm (figure 3). The difference between the generalization probabilities of the
‘Hebbian rule’ and minover algorithm can be understood by studying the leaming
methods of each algorithm. The most simple algorithm is the ‘Hebbian rule’ which
learns in one step, giving

One can observe that the direction of w is from the centre-of-mass of the black points
to the centre of the white. This solution is not robust under translations of the vector
w and gives poor generalization probabilities (see figure 1) [61.

L e a r n i n c l from e x a m D l e s

n ~ s I

5 U 0.5h 1 2 3 4

Figure 3. Comparison between generalization probabilities G(o) for the A-rule (m = O S) ,
the Hebbian rule and the minover algorithm, from a set of randomly generated examples.
The points indicate simulation reuslts obtained after averaging over 15 networks with .. N = 50,

On the other hand, the minover algorithm determines the ‘minimal connector’
which is the minimal distance between the white and black convex polytopes, where
the white (index 0) and black (index 1) polytopes are defined as follows:

Letter to the Editor L509

With this notation, the minover algorithm gives o as follows:

o - o = m i n L 2 where L2 = (xI - x,J2
...b.

and thus o is only sensitive to the closest black and white points. The minover algorithm
thus constructs the perceptron with maximal stability and has the best generalization
probability of all known single network linear discriminants [2].

The A-rule used in this letter is sensitive to those points whose distances from the
hyperplane fall into the 'steep part' of the tangent hyperbolic function; the width of
this region is controlled by m. In this way, it forms a compromise between the Hebbion
rule (all the points) and the minover algorithm (only the nearest points). The good
generalization probabilities show that this can he useful. With the Hebbian rule, the
neuron network failed to leam 9% of the examples presented: with the minover
algorithm, it leamt all the examples presented, as it should. The calculations were
done on a Vax 9000: the average CPU times were 3 b 41 m 32 s for the A-rule, 13 m 50 s
for the minover algorithm, and 17 s for the Hebbian rule.

In the case of leaming by queries, the differences in generalization probability did
not show a hierarchy of quality dependent on m, although the generalization probability
was even better than in learning by examples (see figure 4). However, the examples
presented were less well learnt (see table 1). The comparison with the Hebbian rule
and minover algorithm yields similar results as before (figure 5) : with the Hebbian
rule, 13% of the examples presented were not learnt, while, as before, all the examples
presented were leamt with the minover algorithm. The calculations were done on a

Learning f r o m queries
1 ,

G(a)

0.9

0.8

0.7

0.6

'' A -rule m=O. 2 (selected e x a m .) " -
'I A-rule m=O. 5 (selected e x a m . I I'

~ ' A - r u l e m = l . O (s e l e c t e d exam.)"--^
** A -rule m=1.5 (selected e x a m .) ''

I
0 1 2 3 4 a

Figore 4. Comparison between generalization probabilities G (u) for the A - N ~ from a set
of releered examples with m = 0.2.0.5, 1, 1.5. The points indicate simulation results obtained
after averaging over I5 networks with N = 50.

Table 1. Learning by queries, comparison of success in learning the examples presented
for various values of m.

m 0.2 0.5 I 1.5

% failure 6.1 4.9 4.7 1.6

L510 Letter to the Editor

1

G(a)

0 . 9

0.8

0.1

0 . 6

0.5

Learning from queries

I. A-rule m=O.S(selected exam.)" -

*'hebb (selected exam.) '. -
i

"minover (selected exam.) .'

1 2 3 4 a
Figure 5. Comparison between generalization probabilities G(m) for the A - N ~ (m =OS),
the Hebbian d e and the minover algorithm, from a set of selected examples. The points
indicate simulation results obtained after averaging over 15 networks with N = 50.

Vsx 9000: :he m x a g e CPU times were 0 h 3 m 53 s fc: :he h=-!e, !6 m 32 s. fer the
minover algorithm, and 1 m 32 s for the Hebbian rule.

In conclusion, we have shown that by a judicious choice of the slope for the sigmoid
transfer function, the A-rule performs closely to the perceptron with maximal stability
both in learning from examples and learning from queries protocols. However, in a
typical situation, the longer time needed to achieve convergence and to optimize the
slope might offset the gains in generalization ability. We do not see any computational
reason favouring this 'analogue' approach over more 'orthodox' optimization
approaches: they seem to us more like different alternatives for searching the space
of solutions.

We thank P Erdos, F Pbzmindi, D Rickebusch and G Schibler for useful discussions.
The support of the Swiss National Science Foundation through grant no 20.28846-90
is gratefully acknowledged.

References

[I] Rumelhart D E, McClelland J Land the PDP research group Parallel Distributed Pmcessing (Cambridge,

[,?I Kinzel Wand Rujin P 1990 Ewophyz. LPII. 13 473
[3] Valiant L G 1984 Commun. ACM 27 1134
[4] Opper M, Kimd W, Kleinz J and Nehl R 1990 J. Phys. A: Math. Gen. 23 L581
[SI Burnod Y and Kom H 1989 Roc Natl Acad. Sei USA 86 352-6
[6] Rujin P 1991 Stothticol Mechanics of Neural Network ed L Garrido (Lecture Notes in Physics 368)

[7! Press W Hi Flannery B P; Teukolsky S A and Veetterling W T 1989 Numerical Recipes in C (Cambridge:

[E] Krauth Wand MCzard M 1987 J. Phys. A: Math. Gen. 20 L745

M A MIT Press)

(Berlin: Springer)

Cambridge University Press)

